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ABSTRACT 

 

This thesis focuses on singular value decomposition for matrices. We present in the first chapter 

basic definitions on linear algebra. The second chapter deals with the main subject of our work, 

namely, singular value decomposition of matrices. We end the thesis with a brief section about 

some applications of singular value decomposition.    
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                                                                  1. PRELIMINARIES 

 

First of all we start with a very basic level of linear algebra knowledge involving matrices. 

 

DEFINITION 1.1 (Matrix) A matrix 𝐴 is rectangular array or table of objects such as numbers, 

symbols, expressions, etc arranged in m rows and and n columns, which we denote by  

𝐴 = [aij]m x n. 

 

If a matrix A has the same number of rows and columns (i.e., 𝑚 = 𝑛), we say it is a square 

matrix of order 𝑛. 

 

Among square matrices, some of them are of particular importance such as diagonal matrices, 

orthogonal matrices, symmetrix, matrices etc. Hence, we find it convenient to define at least 

these matrices here. 

 

We let m x n (R) denote the set of all  matrices with real entries. In particular, the set 

n (R) will stand for the set of all square matrices of order  

 

Recall that all the entries aij of a matrix A for which i=j form the main diagonal of the matrix. 

 

DEFINITION 1.2 (Diagonal matrix) A matrix for which all the entries outside the diagonal 

are zero is called diagonal. 

 

DEFINITION 1.3 (Tranpose of a matrix) The tranpose of a matrix  is obtained by 

interchanging the rows and columns of  and denoted by T. 

 

DEFINITION 1.4 Orthogonal matrix) A square matrix  such that , where  

denotes the identity matrix, is called orthogonal. Equivalently, A is orthogonal if , 

where  means the inverse matrix of . 

 

DEFINITION 1.5 (Symmetric matrix) A square matrix A whose entries are real numbers is 

called symmetric (resp. skew-symmetric)  if AT = A (resp. AT = - A). 
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DEFINITION 1.6 (Rank of a matrix) The maximum number of linearly independent rows 

(resp. columns) of a matrix  is called rank of  which we denote by rank( ). 

 

It is clear that one might consider some operations also with matrices such as matrix addition, 

multiplication of a matrix by a scalar and matrix multiplication, etc. The latter one is of most 

importance for us so that we define it below; 

 

DEFINITION 1.7 (Matrix multiplication) Let =[aij]∈ m x n (R) and =[bjk]∈ n x p (R) and 

matrix multiplication fot these two matrices defined as  

                                                        

𝐴𝐵 = [∑ (𝑎𝑖𝑗𝑏𝑗𝑘)
𝑛

𝑗=1
]m x p 

 

Let S = {1, 2, …, n} be the set of positive integers from 1 to , arranged in ascending order. A 

rearrangement j1 j2 … jn of the elements of S is called a permutation of S. We denote the set of 

all permutations of S by Sn. 

 

A permutation j1 j2 … jn is said to have an inversion if a larger integer, jr precedes a smaller one. 

js. A permutation is called even if the total number of inversions in it is even. or odd if the total 

number of inversions in it is odd. If ≥2, there are !/2 even and !/2 odd permutations in Sn. 

   

DEFINITION 1.8 (Determinant of a square matrix) Let 𝐴 = [aij] be an 𝑚 × 𝑛 matrix. The 

determinant function, denoted by det, is defined by  

                                                      det (𝐴) = ∑(±)a1j1a2j2…anjn 

where the summation is over all permutations j1 j2 … jn of the set S = {1, 2, …, 𝑛}.The sign is 

taken as + or - according to whether the permutation j1 j2 … jn is even or odd. 

 

In particular, for and  matrices A =  and  =  we have 

respectively det ( ) = ad – bc and det ( ) = aei + bfg + cdh – ceg – ahf – ibd). In both 

expressions, the term of positive sign correspond to even permutation of the set  (resp. 

 and those of negative signs to odd permutations. 

 

DEFINITION 1.9 (Characteristic polynomial/equation of a matrix) Let 𝐴 be an 𝑛 × 𝑛 matrix. 

Then the determinant of the 𝜆𝐼n –  𝐴 is called the characteristic polynomial of A. The equation  
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𝑃(𝜆) =det(λIn – A)= 0 

is called the characteristic equation of 𝐴. 

 

DEFINITION 1.10 (Eigenvalue and Eigenvector of a matrix) In a square matrix A if there is a 

column matrice or vector  𝑋 ≠ 0 that 𝐴𝑋 =  𝜆𝑋 then the scalar 𝜆 is called an eigenvalue of 𝐴 

and the nonzero vector 𝑋 is the eigenvector corresponding to eigenvalue 𝜆. 

 

The notion of an eigenvalue is important in calculating singular value of a matrix and  (See 

Definition 1.12 below). Moreover, eigenvalues and their corresponding eigenvectors are also 

important for singular value decomposition of matrices since one might use them to calculate 

left and right singular matrices (See Definition 1.11). 

 

DEFINITION 1.11 (Left and right singular matrices) Let 𝐴 be any matrix. Then a matrix 𝑈 

whose columns contain eigenvectors of 𝐴𝐴T is said to be left singular matrix. Analogously, a 

matrix V whose columns are eigenvectors of 𝐴T𝐴 is called right singular matrix. 

 

Its known that symmetric matrices possess real eigenvalues and the eigenvector corresponding 

to distinct eigenvalues are always orthogonal (See Definition 1.14) 

  

DEFINITION 1.12 (Singular value of a matrix) Let A be a 𝑚 × 𝑛 matrix. Square roots of 

eigenvalues (which are non-negative) of the symmetric matrix ATA associated to A are called 

singular values of A. 

 

DEFINITION 1.13 (Real vector space) Let 𝑉 be set of vectors, 𝑐 and 𝑑 be any real numbers. 

Suppose that the operations ⊗ (scaler multiplication) and ⊕ (vector addition) on 𝑉 are closed. 

Then we say 𝑉 is a real vector space if satisfies the following properties; 

 

(1)  𝒖 ⊕  𝒗 = 𝒗 ⊕  𝒖 for every 𝒖, 𝒗 in 𝑉 

 

(2) There exists an element 𝟎 in 𝑉 such that 𝟎 ⊕  𝒖 = 𝒖 ⊕  𝟎  for any 𝒖 in 𝑉 ( We call 𝟎 as 

zero vector.) 

 

(3) 𝒖 ⊕ (𝒗 ⊕  𝒘) = (𝒖 ⊕  𝒗) ⊕  𝒘 for all 𝒖, 𝒗, 𝒘 in 𝑉 

 

(4) For every 𝒖 in 𝑉 there exists an element − 𝒖 in 𝑉 such that 𝒖 ⊕ −𝒖 =  −𝒖 ⊕ 𝒖 =  𝟎. 
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(5) 𝑐 ⊗ (𝒖 ⊕  𝒗) =  𝑐 ⊗  𝒖 ⊕  𝑐 ⊗  𝒗  for every 𝒖, 𝒗 in 𝑉 

 

(6) (𝑐 + 𝑑)⊗  𝒖 =  𝑐 ⊗  𝒖 ⊕  𝑑 ⊗  𝒖 for every 𝒖 in 𝑉 

 

(7) 𝑐 ⊗ (𝑑 ⊗  𝒖) = (𝑐𝑑) ⊗  𝒖  for every 𝒖 in 𝑉 

 

(8) 1 ⊗  𝒖 = 𝒖 for every 𝒖 in 𝑉 

  

DEFINITION 1.14 (Inner product) Let 𝑉 be a real vector space. An inner product on 𝑉 is a 

function that assigns to each ordered pair of vectors 𝒖, 𝒗 in 𝑉 a real number (𝒖. 𝒗) satisfying 

the following properties: 

 

(1) (𝒖. 𝒖) ≥ 𝟎; (𝒖. 𝒖) = 𝟎 if and only if 𝒖 = 𝟎 

 

(2) (𝒖. 𝒗) = (𝒗, 𝒖) for every 𝒖, 𝒗 in 𝑉 

 

(3) (𝒖 ⊕  𝒗, 𝒘) = (𝒖.𝒘) + (𝒗.𝒘) for all 𝒖, 𝒗,𝒘 in 𝑉 

 

(4) (𝑐 ⊗ 𝒖, 𝒗) =  𝑐(𝒖. 𝒗) for every 𝒖. 𝒗 in 𝑉 and 𝑐 is any real number. 

 

For 𝑋 and 𝑌 n dimension vectors their inner product defined as; 

< 𝑋, 𝑌 > =∑𝑥�̇�𝑦𝑖

𝑛

𝑖=1

 

 

We noticed that inner product of two vectors is equal to a real number. 

 

𝑋 and 𝑌 vectors are called perpendicular or orthogonal if their inner product is equal to 0. 

 

A set {X1, X2, … , Xn} of vectors forms an orthogonal system if the inner product of every two 

different vector is equal to 0. 
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If every vector in an orthogonal system {X1, X2 … , Xn} is unit then {X1, X2, … , Xn} forms an 

orthonormal system. 

 

DEFINITION 1.15 (Inner product space) A real vector space equipped with an inner product 

is called an inner product space. 

 

DEFINITION 1.16 (Orthonormal basis) ) Let 𝑉 be an inner product space and S = {u1, u2, … 

, un} be an ordered basis for 𝑉. We say S is an orthonormal basis if it satisfies: 

(1) <ui , uj> = 0 for every i ≠ j 

 

(2) <ui , ui> = 1 for i = 1 … n 

 

DEFINITION 1.17 (Gram-Schmidt process)  

Theorem: Let 𝑉 be an inner product space and 𝑉 >  𝑊 ≠ {𝟎} and number of linear indepently 

vector in W be 𝑚. Then there exists an orthonormal basis T = {t1, t2, … ,tm} for 𝑊. 

 

To formulate this theorem let W and T be W = {w1, w2, … ,wm} and T = {t1, t2, … ,tm} then 

 

𝑡𝑚= 𝑤𝑚 −∑
⟨𝑤𝑚, 𝑡𝑗⟩

⟨𝑡𝑗, 𝑡𝑗⟩
𝑡𝑗

𝑚−1

𝐽̇=⊥

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

                         2. SINGULAR VALUE DECOMPOSITION OF MATRICES 

 

There are numerous decompositions for matrices like spectral decomposition, LU 

decomposition, QR decomposition, and etc. We refer the reader [1] for more detailed exposition 

on such decomposition theorems. Nonetheless, the main purpose here is another kind of 

decomposition so that we study now singular value decomposition of matrices. 

 

Remember the theorem that we can decompose an 𝑛 × 𝑛 symmetric matrix A as follows 

 

A = PDPT 

 

where D is a diagonal matrix and P is an orthogonal matrix. The diagonal entries of D are the 

eigenvalues of A, λ1, λ2, … , λn, and the columns of P are associated orthonormal eigenvectors 

x1, x2, … , xn.  

 

Now, M be 𝑚 × 𝑛 real matrix. Then there exist orthogonal matrices U of size 𝑚 ×𝑚 and V of 

size 𝑛 × 𝑛 such that 

                                                             M = U S VT ,                                                                 (1) 

 

where S is an 𝑚× 𝑛 matrix with nondiagonal entries all zero and  

s11 ≥s12 ≥ … ≥ spp ≥0, 

where 𝑝 =  𝑚𝑖𝑛{𝑚, 𝑛}. 

 

The diagonal entries of S are singular values of M and U is the left singular matrix of M while 

V means the right singular matrix of M.  

The singular value decomposition of M in (1) can be expressed as the following linear 

combination: 

 

M = col1(U) s11col1(V)T + col2(U) s22col2(V)T + … + colp(U) sppcolp(V)T                                (2) 

  

To determine the matrices U, S and V in the singular value decomposition given in (1), we start 

as follows: An 𝑛 × 𝑛 symmetric matrix related to M is MTM. By theorem given up there exists 

an orthogonal 𝑛 × 𝑛 matrix V such that 
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V(MTM)VT = D, 

 

where D is a diagonal matrix whose diagonal entries λ1, λ2, … , λn are the eigenvalues of MTM. 

If we denote column j of V as vj, then (MTM) vj = λjvj. Let’s multiply both sides of this equation 

on the left by vj
T; then we can rearrange the expression as; 

 

vj
T(MTM)vj = λjvj

T vj      or      (Mvj)
T(Mvj) = λjvj

T vj       or      |Mvj|
2 = λj |vj|

2 

 

It is clear that length of a vector is nonnegative so the last expression implies that λj≥0.  

 

Finally, we determine the 𝑚 ×𝑚 orthogonal matrix U. Given the matrix equation in (1), let us 

see what the columns of U should look like. 

 Since U is to be orthogonal, its columns must be an orthonormal set; hence they arc 

linearly independent 𝑚 × 1 vectors . 

 

 The matrix S has the form (block diagonal) 

 

S= 

(

 
 
 (

𝑠11 0 … 0
0 𝑠22 ⋱ 0
⋮ ⋱ ⋱ 0
0 … 0 𝑠𝑝𝑝

) ⋮ 𝑂𝑝,𝑛 − 𝑝 

⋯ ⋮ ⋯
𝑂𝑚−𝑝, 𝑝 ⋮ 𝑂𝑚− 𝑝, 𝑛 − 𝑝)

 
 
 

 

 

 

where Or, s denotes an 𝑟 × 𝑠  matrix of zeros. 

 

 From (1), MV = US, so  

A (v1 v2 … vn) = (u1 u2 … um) 

(

 
 
 (

𝑠11 0 … 0
0 𝑠22 ⋱ 0
⋮ ⋱ ⋱ 0
0 … 0 𝑠𝑝𝑝

) ⋮ 𝑂𝑝, 𝑛 − 𝑝 

⋯ ⋮ ⋯
𝑂𝑚−𝑝, 𝑝 ⋮ 𝑂𝑚−𝑝, 𝑛 − 𝑝)
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This implies that we need to require that Avj = sjj uj for j = 1,2 … p 

However, U must have m orthonormal columns, and m≥p. 

We use Gram-Schmidt process here to obtain the remaining m-p columns of U. (This is 

necessary only if m≥p.) Since these m-p columns are not unique, matrix U is not unique. 

(Neither is V if any of the eigenvalues of MTM are repeated.) 

 

Now, we give an example. 

 

EXAMPLE 2.1 Consider the matrix M = (
6 4 4
4 6 −4

). It follows that the singular values of 

𝑀 might be obtained through the eigenvalues of MMT. Hence, we form first the associated 

symmetric matrix below : 

  

MMT = (
68 32
32 68

) 

for which the characteristic polynomial is  

P(λ)= det(MMT - λI) = λ2 -136λ +3600 = (λ-100).( λ-36). 

 

It follows that the eigenvalues are 𝜆 = 100 and 𝜆 = 36 which means the singular values are 

10 and 6, respectively. 

 

Since S contains the eigenvalues of MMT in its diagonal we obtain the matrix 𝑆 as follows: 

 

S = (
10 0 0
0 6 0

) 

 

Now, the corresponding eigenvectors of MMT is needed. For the eigenvalue 𝜆 = 100 we look 

for a non zero 𝑋 such that (𝑀 − 100𝐼)𝑋 =  0.  

 

For the eigenvalue 100; 

 

(𝑀 − 100𝐼)𝑋 =  0 then  
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𝑋 = (
1
1
) unit form of its is; 𝑋= (

√2

2

√2

2

) 

 

For the eigenvalue 36; 

 

(M-36I) 𝑋 = 0 then  

𝑋 = (
−1
1
) unit form of its is; 𝑋= (

√2

2

−√2

2

) 

Note: If we couldn’t find these eigenvectors as unit form we must use Gram-Schmidt process. 

 

Now we need to find the eigenvalues of MTM. 

 

MTM = (
52 48 8
48 52 −8
8 −8 32

) 

 

P(λ)= det= -λ3 +136λ -3600 λ = - λ .(λ-100).( λ-36)  

λ=0, λ=36, λ=100 

 

Now, we can find eigenvectors of MTM. 

 

For the eigenvalue 0; 

(MTM – 0.I). 𝑋 =  0  then 

 

𝑋 = (
−2
2
1
) unit form of its is; 𝑋=

(

 

√2

2

√2

2

0)

  

 

For the eigenvalue 36; 

(MTM – 36.I). 𝑋 =  0  then 



10 
 

 

𝑋 = (
1
−1
4
) unit form of its is; 𝑋=

(

 
 

√2

6

−√2

6

2√2

3 )

 
 

 

 

 

For the eigenvalue 100; 

(MTM – 100.I). 𝑋 =  0  then 

 

𝑋 = (
1
1
0
) unit form of its is; 𝑋=

(

 
 

−2

3
2

3
1

3 )

 
 

 

 

Finally we find; 

 

𝑈 = (

√2

2

√2

2

√2

2
−
√2

2

)                     𝑆 = (
10 0 0
0 6 0

)                          𝑉 =

(

 
 

√2

2

√2

6
−
2

3

√2

2
−
√2

6

2

3

0
2√2

3

1

3 )
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                        3. SOME APPLICATIONS ON COMPUTER ENVIROMENT 

 

Digitized images are big matrix of numbers. Due to singular value decomposition (SVD) we 

can drop cost of storage and we can get better display resolution with using rank of matrix 

notion.  

 

In this section 3 examples of these applications are given. 

 

 

                  Figure 3.1 Application of SVD with low rank approximation on tiger image. [2] 
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                  Figure 3.2 Application of SVD with low rank approximation on plume image. [3] 
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       Figure 3.3 Application of SVD with low rank approximation on human face image. [4] 
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RESULTS 

 

Singular value decomposition (SVD) is more than abstract mathematics. It is a way to 

increasing welfare level and making human life’s easier via applinyg it on industry like social 

media sites, immediare data providers on finance and etc.  
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